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Hyperbolicity and Astigmatism
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We study the mechanism of hyperbolicity in high-dimensional Hamiltonian
systems. Especially we consider ergodic billiards with focusing components in
dimensions d�3. In this case astigmatism serves as an obstacle to hyperbolicity
in billiards with large focusing components. The notion of absolutely focusing
mirrors is extended to the dimensions d�3 and the first classes of ergodic
billiards with both focusing and dispersing components are constructed in d�3.

KEY WORDS: Defocusing; dispersing; astigmatism; absolutely focusing
mirrors; ergodicity.

1. INTRODUCTION

Systems with elastic collisions (or billiards) form the most popular and well
investigated class of nonuniformly hyperbolic Hamiltonian systems. Hyper-
bolicity means that locally orbits in a phase space of a dynamical system
diverge exponentially. If this phase space is compact then local hyper-
bolicity often generates a global chaotic behavior of a system, which is
characterized by its ergodicity, mixing (decay of time correlations), etc.

Naturally, smooth, uniformly hyperbolic systems were investigated at
first. In this case the rates of instability (Lyapunov exponents) are defined
in all points of the phase space and locally do not differ ``too much'' from
each other. Uniformly hyperbolic systems include geodesic flows on
manifolds of negative curvature, considered long ago by Hadamard,
Hedlund and Hopf. Anosov systems and Smale's axion A systems (see e.g.,
ref. 1 and references therein) also belong to uniformly hyperbolic dynamical
systems.
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The ground-breaking work by Sinai(2) on what is known as Sinai
billiards has opened the new era in the studies of hyperbolic systems. Many
new tools were introduced in ref. 2 to tackle nonuniformly hyperbolic
systems. Sinai billiards appear in many important physical models like e.g.,
the Lorentz gas. One of the milestones in the studies of hyperbolic billiards
was the discovery of the new mechanism of hyperbolicity(3) which differs
from the mechanism of hyperbolicity in geodesic flows on manifolds of
negative curvature and in Sinai billiards. In the latter systems hyperbolicity
is generated by the dispersing character of surfaces of negative curvature or
of the dispersing boundary in Sinai billiards. Therefore, this mechanism of
hyperbolicity is called the mechanism of dispersing. However, the billiards
constructed in ref. 3 do not have dispersing components of the boundary.
On the contrary, the crucial role is played there by the focusing components,
which could be arranged in such way that effectively the trajectories (rays)
diverge in phase space because of a strong defocusing. Therefore, this
mechanism of hyperbolicity is called the mechanism of defocusing. The
discovery of this mechanism allowed to construct chaotic geodesic flows on
surfaces with nonnegative curvature (e.g., on two-dimensional spheres and
tori). A lot of work has been devoted to the study of billiards where hyper-
bolicity has been generated by the mechanism of defocusing or by both the
mechanisms of dispersing and defocusing.(1) However, all these billiards were
two-dimensional ones. It should be compared with Sinai billiards which
were proved soon after the paper(2) to be chaotic in all dimensions.(1)

The crucial question whether or not the mechanism of defocusing can
generate hyperbolicity in dimensions greater than two remained open for a
long time until it has been recently settled in refs. 4 and 5. At first, it has
been claimed in ref. 6 that the mechanism of defocusing can generate
chaotic behavior in d�3, where some examples of corresponding billiards
were also suggested. On the other hand, Wojtkowski(7) constructed some
examples of 3d billiards with focusing and flat components having linearly
stable periodic orbits.

Billiards where hyperbolicity is generated by the mechanism of
defocusing occupy the place between dispersing billiards and integrable one
(see ref. 1 and Section 4 below). Most importantly the new phenomenon
becomes crucial in systems with local focusing in dimensions d�3. This
phenomenon, which is called astigmatism, is well known in the geometric
optics.(8) Astigmatism means that a strength of focusing can be quite dif-
ferent in different two-dimensional planes. Especially it can be very weak in
some planes while the mechanism of defocusing requires rather strong
focusing in all two-dimensional sections. Again, it should be compared with
the mechanism of dispersing which just require arbitrary small (but non-
zero) dispersing in any two-dimensional plane.
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The classes of billiards constructed in refs. 4 and 5, where hyperbolicity
is generated by the mechanism of defocusing, allowed only focusing and
flat components of the boundary. The main purpose of this paper is to
describe some classes of chaotic high-dimensional billiards with all three
types (focusing, dispersing and flat) components of the boundary. The
other purpose is to formulate the general approach to the construction of
hyperbolic billiards in dimensions d�3 and to extend the notion of
absolutely focusing mirrors(9) to the higher dimensions. In the last section
we discuss some open problems and a new physical model inspired by the
proof that defocusing works in d�3.

2. LOCAL BEHAVIOR OF BILLIARDS, ASTIGMATISM AND
THE MAIN RESULTS

We consider billiards in d-dimensional regions Q/Rd (d�2) with
piecewise smooth (of class C3) boundary �Q. The boundary �Q is equipped
with a field of inward unit normal vectors n(q), q # �Q. Upon fixation of a
unit normal vector at each nonsingular point q # �Q we can define a cur-
vature (the second fundamental form or the curvature operator K(q)) at q.
We assume that at each regular component (�Q)i , i=1, 2,..., k, of the
boundary �Q the curvature operator is either nonnegative (K(q)�0,
q # (�Q) i ), nonpositive (K(q)�0, q # (�Q) i ) or K(q)=0 for any q # (�Q) i .
(For d=2 it means that for each component the curvature is positive,
negative or identically equal to zero.) By natural reasons we will call such
regular components of the boundary �Q as dispersing, focusing and flat
components, respectively. For instance, a billiard is called dispersing if
K(q)>0 at all regular points of the boundary. Our goal is to study billiards
which contain at least one strictly focusing component (�Q)i # �Q, i.e.,
K(q)<0 at all regular points of (�Q) i .

A billiard is a dynamical system generated by the motion of a point
particle with the unit velocity inside the region Q being reflected from its
boundary according to the law ``the angle of incidence equals the angle of
reflection.'' It means that upon reflection the tangent component of the
velocity remains the same, while the normal component changes its sign
according to the rule v+=v&&2(n(q), v&) n(q), where v+(v&) is the
velocity of the particle immediately after (before) reflection.

The phase space of M of a billiard is the restriction of the unit tangent
bundle of Rn to Q. We'll use the standard notation for phase points
x=(q, v) # M, where q is the point of the configuration space Q and v is
the unit velocity vector. The billiard preserves the Liouville measure
dv=dq dw where dq and dw are Lebesgue measures on Q and the unit
(d&1)-dimensional sphere. The corresponding flow will be denoted by
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[St]. It is customary for billiard-type systems to study instead of S t a
dynamical system with discrete time, which is called a billiard map T.
Denote M=[x=(q, v), q # �Q, (v, n(q))>0]. Let ? be the projection of M

onto the configuration space, i.e., ?(x)=q. For x=(q, v) # M let {(x) be
the first positive moment of reflection from the boundary of the billiard
orbit determined by x. Then Tx=(q$, v$)=S {x, so that q$ is the point of
the next reflection and v$ is the outcoming velocity vector at that point. The
billiard map Tpreserves the projection of the Liouville measure to the
boundary d+(q, v)=const(v, n(q)) dq dw, where dq is the (d&1)-dimen-
sional Lebesgue measure on the boundary �Q generated by the volume and
dw is the (d&1)-dimensional Lebesgue (uniform) measure on the unit
sphere. The const is the normalizing constant so that +(M )=1.

In order to study the local behavior of billiard orbits we introduce a
notion of a (d&1)-dimensional wave front # (also called a control surface),
which is an infinitesimal surface of class C2 perpendicular to the orbit. The
rate at which the neighboring trajectories diverge is defined by the cur-
vature operator of the wave front #. Suppose for simplicity that initially the
wave front # is flat, i.e., its curvature operator is identically zero. Then after
the reflection from a dispersing component of �Q all principle curvatures of
# become positive, which generates the divergence of neighboring trajec-
tories along these hyperplanes (Fig. 1a). However, after the reflection from
the focusing components, some of the principle curvatures become negative
and thus the neighboring trajectories converge (instead of diverging) along
those hyperplanes (Fig. 1b). The mechanism of defocusing ensures that a
free path (a path between two consecutive reflections) is long enough so
that the corresponding families of trajectories defocus and after that

Fig. 1. Dispersing (a), focusing (b) and defocusing (c) beams of rays (trajectories).
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diverge, i.e., from a certain point on the free path (the conjugate point) the
curvature operator becomes positively definite (Fig. 1c).

Therefore, to understand the dynamics of billiards in the vicinity of the
given orbit it is important to know how the curvatures of the control sur-
face # evolve. Before deriving the corresponding formula we will formulate
the first condition on billiards under study.

Condition A. Each focusing component (�Q) i the boundary �Q is
a spherical cap. By a spherical cap we mean a piece of the (d&1)-dimen-
sional sphere bounded by some hyperplane Bi .

Condition A implies that a part of the orbit consisting of consecutive
reflections from the same focusing component of the boundary lies in some
two-dimensional plane P, which contains the center of the corresponding
sphere. The plane P defines the unique direction on a hyperplane U, per-
pendicular to the orbit. We will call this direction a planar subspace while
its orthogonal complement will be called an orthogonal or transversal sub-
space. Then U=Up�Ut , where Up=U & P and Ut is the (d&2)-dimen-
sional orthogonal complement to Up in U. Since the control surface # is
tangent to U the corresponding planar and the orthogonal directions can
be also naturally defined on #. (Observe, that these directions are not
intrinsic notions of the control surface but can be defined only with respect
to a given (spherical) focusing component of the boundary �Q.)

Now we are ready to describe how the curvatures of the wave front #
evolve in the course of the billiard dynamics (for the detailed description
though see refs. 4 and 5). For the sake of simplicity we assume that the
principal curvature directions of # coincide with the planar and orthogonal
ones. It is easy to see, that in the planar direction the curvature changes
just like in the two-dimensional billiards

}+=}&+
2k

cos .
(1)

where }& (}+) is the curvature at the moment just before (after) the reflec-
tion, . is the angle of reflection and k is the curvature of the boundary.(2, 3)

However, in the orthogonal subspace the curvatures obey [ref. 8, p. 66]
another rule

}=
+=}=

&+2k cos .

where }=
& (}=

+) is the curvature in the given direction immediately before
(after) the reflection and k and . are the same as in (1).
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The relations (1) and (2) show the nature of the astigmatism.(8) It is
easy to see that in the planar direction the curvature of the wave front #
always changes upon reflection at least by the value 2k while in the
orthogonal directions it can change, in principle, by an arbitrarily small
value.

Finally, during the free path, the principal curvature directions are
preserved. Therefore the curvature evolution in all directions reads as(1, 2)

}(t)=
}(0)

1+}(0) t
(3)

It is easy to see from (3) that a focusing (in a given direction) family of
trajectories focuses at the moment t=&1�}(0).

The main difficulty in the study of the evolution of the wave front #
is caused by the fact that when # approaches some spherical cap C/�Q,
its principal curvature directions do not generally coincide with the planar
and orthogonal directions. To perform the corresponding analysis one
must analyze the evolution of the curvature operator of # (see ref. 4 for
details).

The relation (2) shows that, even with very big free path available,
along some directions on a control surface trajectory may converge
between two consecutive reflections from the boundary (i.e., the case depic-
ted in Fig. 1b arises) and moreover a contraction along some directions
may be arbitrarily big. This situation arises because of astigmatism and it
does not occur in dimension two. Therefore, chaotic billiards in 2d can con-
tain very big focusing component of the boundary, i.e., a focusing compo-
nent can be almost entire circle.(3) The astigmatism requires to pay some
price to ensure hyperbolicity. The next condition represents this price. It
says that focusing components of the boundary are not too big.

Let C be a spherical cap of some (d&1)-dimensional sphere Sd&1,
d�3, and O is the center of this sphere. Take two arbitrary points
Y1 , Y2 # �C, where �C is the boundary of C. We shall call the angle Y1 OY2

a central angle of C corresponding to the points Y1 , Y2 .

Condition B. Let (�Q) i be a focusing component of the boundary
�Q. Then all central angles of (�Q) i do not exceed 90%.

We also introduce

Condition B$. Let (�Q) i be a focusing component of the boundary
�Q. Then all central angles of (�Q) i do not exceed 60%.
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Now we must take care of free paths to make them sufficiently long in
order to allow trajectories defocus after a reflection from a focusing compo-
nent of the boundary. This will be taken care of by the next three conditions.

Definition 1. A focusing component (�Q)i of the boundary is
attached to a single regular component (�Q) j/�Q if �((�Q) i )/(�Q)j .

Condition C. Each focusing component of the boundary �Q is
attached to some flat or dispersing component of �Q.

Thus a focusing component cannot be attached to another focusing
component or to more than one component of �Q. The case, when focusing
components were attached to flat components of the boundary, was con-
sidered in refs. 4 and 5. It is easy to see that the Condition C does not
contradict the Conditions A and B. For example there can be spherical dis-
persing components of �Q to which focusing components (spherical caps)
are attached.

Let a spherical cap (�Q) i be attached to a regular component (�Q)j .
Any spherical cap (�Q) i is defined by a (d&1)-dimensional sphere S d&1

i

and by a hyperplane Bi . We denote by B$i the hyperplane which is parallel
to Bi and contains the center of the sphere S d&1

i .

Condition D. If at least one spherical cap (�Q) i is attached to a
component (�Q) j/�Q then (�Q) j intersects (besides these caps) only flat
components of the boundary �Q. Moreover, all these flat components are
perpendicular to the hyperplane Bi .

Definition 2. The zone of focusing of the spherical cap (�Q)i is a
polyhedron bounded by the hyperplanes Bi and B$i and by the hyperplanes
which contain flat components of �Q intersecting (�Q)j , where (�Q) j/�Q
is the regular component to which (�Q)i is attached.

Theorem 1. Let a region Q/Rd satisfy Conditions A�D. Suppose
also that the zones of focusing corresponding to different focusing com-
ponents of the boundary �Q do not intersect. Let also each zone of focusing
be a regular polyhedron which tiles the whole space Rd. Then the billiard in
Q has non-vanishing Lyapunov exponents.

An example of a region satisfying the conditions of Theorem 1 is
depicted in Fig. 2.
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Fig. 2. A billiard region under study (a) and its cross section (b).
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Theorem 2. Suppose that all conditions of Theorem 1 are satisfied,
but the Condition B is replaced by the Condition B$. Then the billiard in
Q is Bernoulli (B-) system.

Corollary. Under the conditions of Theorem 1 a billiard in Q is
ergodic, mixing and Kolmogorov (K-) system.

The proofs of Theorems 1 and 2 are completely analogous to the ones
in refs. 4 and 5. Only a few trivial additions are needed.

3. ABSOLUTELY FOCUSING MIRRORS

It is quite likely that the conditions of Theorems 1 and 2 are too
restrictive, and the ergodic billiards must correspond to much broader
classes of d-dimensional (d�3) regions. In this section we discuss some
possible extensions of these theorems and formulate a general conjecture.

The fundamental question(6) in this direction is the following one:
Which focusing components are allowed in the boundary of a chaotic

(say, mixing) billiard?
Indeed, dispersing components never belong to a boundary of

integrable billiards, while focusing components can belong to the boundary
of integrable as well as of chaotic billiards.

This problem is essentially settled for two-dimensional billiards.(10)

Naturally, in the first examples of chaotic billiards with focusing com-
ponent all these components had constant curvatures, i.e., they were arcs
of circles. Then more general classes of focusing components were con-
sidered.(11, 12) Finally, the general criterion was introduced.(9) This criterion
says that each focusing component of a boundary of a chaotic billiard must
be absolutely focusing. This notion seems to be new for the geometric
optics. It means (in 2D) that any initially plane wave front of a beam of
rays becomes focusing after the series of consecutive reflections from such
component. Observe, that a component of a boundary (mirror) 1 is focus-
ing if it focuses all plane fronts just after the first reflection from it. So
focusing is a local notion while absolutely focusing is a global one, which
deals with the points of the first and of the last (in a series of consecutive)
reflections from 1.

However, the absolute focusing implies ``more local'' property. It has
been shown(9) that in a series of consecutive reflections from an absolutely
focusing mirror 1 any flat wave front becomes focusing after any (not just
the last one) reflection in a series of consecutive reflections from 1. (This
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local property sometimes is more convenient to deal with.(13, 14) Donnay(14)

introduced it independently.)
The notion of absolutely focusing surfaces (mirrors) requires the

obvious modification in higher (d�3) dimensions. Consider a planar con-
trol surface (wave front) which corresponds to a beam of trajectories which
is about to have a series of consecutive reflections from a focusing compo-
nent (focusing mirror) 1 of a boundary �Q of some billiard region Q. Then
1 is called absolutely focusing if after the last reflection in a series any such
planar wave front becomes focusing in all directions (in all two-dimen-
sional sections).

Conjecture. A focusing surface (focusing mirror) 1 can be a
regular component of the boundary of hyperbolic billiard iff it is absolutely
focusing.

It seems that it is still long way to go to the proof or disproof of this
conjecture. We will discuss some ``more modest'' problems in the next
section.

It is worthwhile though to justify the notion of absolutely focusing
mirrors by presenting the examples of focusing but not absolutely focusing
surfaces. Such examples were so far known in 2D only.(14)

Consider a spherical cap such that all its central angles are less than
90%. (Such caps are allowed by the conditions of Theorem 1.) It follows
immediately from ref. 4 that such spherical caps are absolutely focusing. On
the other hand(4) a simply connected subset of a sphere Sd&1 (d�3) with
a central angle exceeding 90% at least in one two-dimensional section is not
absolutely focusing.

4. CONCLUDING REMARKS

We discuss in this section some future problems, which deal with
possible generalizations of the presented results and with one new physical
model which was inspired by the proof (4, 5) showing how the mechanism of
defocusing can work in higher dimensions.

Condition B$ in Theorem 2 is introduced for some technical reasons.(5)

It seems that ergodicity (mixing, etc.) should be valid when spherical caps
have the internal angles less than 90% rather than 60%. It is possible,
however, that there are some subtle differences in the structure of spectra
of the two corresponding quantum problems.

The existence of zones of focusing inside a billiard region Q for any
spherical cap seems to be essential. Observe though that several spherical
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caps can be attached to the' same flat component of �Q (Fig. 2) and thus
their zones of focusing may intersect. The important question is whether or
not two focusing components could be attached to the same dispersing
component of the boundary.

There are examples of two-dimensional chaotic billiards with only
focusing components in the boundary.(1) Also, there are examples of
chaotic billiards in convex domains.(3) Numerical experiments(16) seem to
demonstrate that such examples may exist in higher dimensions as well.
The crucial problem here is to construct examples of chaotic billiards in
d�3 with focusing components which can intersect several regular com-
ponents of the boundary, rather than to be attached to one component of
�Q. It is important to emphasize that we consider focusing components
rather than semifocusing ones which do not focus along all directions (as
e.g., semicylinders). The corresponding convex chaotic billiards can be
easily constructed as direct products of two-dimensional chaotic billiards.
This idea has already been applied to geodesic flows(17) to produce chaotic
flows on high-dimensional product manifolds.

Finally, we will mention the model which was recently introduced to
mimic the dynamics of particles in nuclei.(15) Consider a (classical) system
of N particles with Hamiltonian

H= :
N

i=1

p2
i

2m
+ :

i< j

U( |ri&rj | ) (4)

where ri is a (two-dimensional) position vector of the ith particle and pi is
its momentum. The interaction potential is defined as

U(r� )={0
�

if r� <a
if r� �a

(5)

Thus, the particles move freely until some pair of particles diverges at the
distance a. The total energy, total momentum and total angular momen-
tum are conserved quantities. It is argued(15) that this system is a simple
classical model for nuclei or atomic clusters. Numerical experiments(15)

show that this system has 2N&4 positive Lyapunov exponents, i.e., it is
completely hyperbolic. Observe, that the potential U(r� ) is in a sense dual
one to the potential in the system of elastically interacting hard disks. It is
well known(1) that the billiard system which corresponds to the hard disks
gas is a semi-dispersing billiard. Thus, it is chaotic due to the mechanism
of dispersing. The system defined by the Hamiltonian (4) can be reduced
to the semi-focusing billiard. Therefore a chaotic dynamics of this system is
generated by the mechanism of defocusing.
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